Инсталирайте Steam
вход
|
език
Опростен китайски (简体中文)
Традиционен китайски (繁體中文)
Японски (日本語)
Корейски (한국어)
Тайландски (ไทย)
Чешки (Čeština)
Датски (Dansk)
Немски (Deutsch)
Английски (English)
Испански — Испания (Español — España)
Испански — Латинска Америка (Español — Latinoamérica)
Гръцки (Ελληνικά)
Френски (Français)
Италиански (Italiano)
Индонезийски (Bahasa Indonesia)
Унгарски (Magyar)
Холандски (Nederlands)
Норвежки (Norsk)
Полски (Polski)
Португалски (Português)
Бразилски португалски (Português — Brasil)
Румънски (Română)
Руски (Русский)
Финландски (Suomi)
Шведски (Svenska)
Турски (Türkçe)
Виетнамски (Tiếng Việt)
Украински (Українська)
Докладване на проблем с превода
Original required 90 clicks, this one requires 42 clicks and can be done from top left to bottom right using Bonnie's numbering:
Tile x Times
------------
1 x 3
2 x 3
3 x 3
4 x 3
5 x 1
6 x 1
7 x 1
8 x 3
9 x 2
10 ---
11 x 2
12 x 1
13 x 2
14 x 2
16 x 3
17 x 2
18 ---
19 x 3
20 x 3
21 x 1
22 x 1
23 ---
24 x 2
Note: you never have to click tiles 10, 18 or 23.
Regardless, thanks to Bonnie for providing the original solution.
But I still claim that the order of the moves does not matter. All that matters is the total number of times each tile is rotated, modulus 4. Shuffle the move order all you want, the result is the same.