Install Steam
login
|
language
简体中文 (Simplified Chinese)
繁體中文 (Traditional Chinese)
日本語 (Japanese)
한국어 (Korean)
ไทย (Thai)
Български (Bulgarian)
Čeština (Czech)
Dansk (Danish)
Deutsch (German)
Español - España (Spanish - Spain)
Español - Latinoamérica (Spanish - Latin America)
Ελληνικά (Greek)
Français (French)
Italiano (Italian)
Bahasa Indonesia (Indonesian)
Magyar (Hungarian)
Nederlands (Dutch)
Norsk (Norwegian)
Polski (Polish)
Português (Portuguese - Portugal)
Português - Brasil (Portuguese - Brazil)
Română (Romanian)
Русский (Russian)
Suomi (Finnish)
Svenska (Swedish)
Türkçe (Turkish)
Tiếng Việt (Vietnamese)
Українська (Ukrainian)
Report a translation problem
1+1/2+1/3+1/4>1+1/2+(1/4+1/4)=2;1+1/2+(1/3+1/4)+(1/5+1/6+1/7+1/8)>1+1/2+1/2+1/2=2.5;1+1/2+(1/3+1/4)+(1/5+1/6+1/7+1/8)+…+{1/(2^k-1)+1/(2^k-2)+…+1/2^k}>1+k/2。我苦口婆心的对他们强调数学严谨规则、
说“调和放缩法”反数学反逻辑反自然反科学反人类 m不成立,结果全都无济于事……
“调和放缩法”我称其为调和放缩“坑”,它没有任何一处符合数学公理,主要错误是:第一,没有通项,这在极限领域绝不允许;第二,违反小数法则,以猜平均数滥竽充数冒充小数实算;第三,偷梁换柱,借着无穷噱头把无限1/n换成无限1/2(或者其他任何N/N+1)。
上述①就是大名鼎鼎的“调和放缩法”,它是一个不等式,它接下来的步骤是:1+1/2+(1/3+1/4)+(1/5+1/6+1/7+1/8)+…+{1/(2^k-1)+1/(2^k-2)+…+1/2^k}>1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+…+{2^(k-1)/2^k}=1+1/2+1/2+1/2+…+1/2+…→∞,
硬生生地把无限递缩级数变成了无限常数级数;②是本人发现的中华级数公式直算法,它是一个全等式,接下来的步骤是:1+(1/2+1/4+…+1/2^k)+(1/3+1/9+…+1/3k)+…+(1/p+1/p²+…+1/p^k)=1+1+1/2+1/4+…+1/(p-1)=57.10…,对1/n求和不多增一分也不会少一毫。