wee wee baguette
Queensland, Australia
 
 
It’s hard to be a based man in a cringe world.

Gravity, or gravitation, is a natural phenomenon by which all things with mass are brought toward (or gravitate toward) one another, including planets, stars and galaxies. Since energy and mass are equivalent, all forms of energy, including light, also cause gravitation and are under the influence of it. On Earth, gravity gives weight to physical objects and causes the ocean tides. The gravitational attraction of the original gaseous matter present in the Universe caused it to begin coalescing, forming stars — and the stars to group together into galaxies — so gravity is responsible for many of the large scale structures in the Universe. Gravity has an infinite range, although its effects become increasingly weaker on farther objects.

Gravity is most accurately described by the general theory of relativity (proposed by Albert Einstein in 1915) which describes gravity not as a force, but as a consequence of the curvature of spacetime caused by the uneven distribution of mass/energy. The most extreme example of this curvature of spacetime is a black hole, from which nothing can escape once past its event horizon, not even light.[1] More gravity results in gravitational time dilation, where time lapses more slowly at a lower (stronger) gravitational potential. However, for most applications, gravity is well approximated by Newton's law of universal gravitation, which postulates that gravity causes a force where two bodies of mass are directly drawn (or 'attracted') to each other according to a mathematical relationship, where the attractive force is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.

In particle physics, the strong interaction is the mechanism responsible for the strong nuclear force (also called the strong force, nuclear strong force), and is one of the four known fundamental interactions, the others are electromagnetism, the weak interaction and gravitation. At the range of 10−15 m (femtometer), the strong force is approximately 137 times stronger than electromagnetism, a million times stronger than the weak interaction and 1038 times stronger than gravitation.[1] The strong nuclear force holds ordinary matter together, confining quarks into hadron particles, creating the proton and neutron, and the further binding of neutrons and protons creating atomic nuclei. Most of the mass-energy of a common proton or neutron is the result of the strong force field energy; the individual quarks provide only about 1% of the mass-energy of a proton.

The strong interaction is observable at two ranges: on a larger scale (about 1 to 3 femtometers (fm)), it is the force that binds protons and neutrons (nucleons) together to form the nucleus of an atom. On the smaller scale (less than about 0.8 fm, the radius of a nucleon), it is the force (carried by gluons) that holds quarks together to form protons, neutrons, and other hadron particles.
:missing: