Nainstalovat Steam
přihlásit se
|
jazyk
简体中文 (Zjednodušená čínština)
繁體中文 (Tradiční čínština)
日本語 (Japonština)
한국어 (Korejština)
ไทย (Thajština)
български (Bulharština)
Dansk (Dánština)
Deutsch (Němčina)
English (Angličtina)
Español-España (Evropská španělština)
Español-Latinoamérica (Latin. španělština)
Ελληνικά (Řečtina)
Français (Francouzština)
Italiano (Italština)
Bahasa Indonesia (Indonéština)
Magyar (Maďarština)
Nederlands (Nizozemština)
Norsk (Norština)
Polski (Polština)
Português (Evropská portugalština)
Português-Brasil (Brazilská portugalština)
Română (Rumunština)
Русский (Ruština)
Suomi (Finština)
Svenska (Švédština)
Türkçe (Turečtina)
Tiếng Việt (Vietnamština)
Українська (Ukrajinština)
Nahlásit problém s překladem
Using the formula: (W + I) * C where W = the constant of wood, which is well known to be 61, as agreed in many scientific circles. I = the variable in this equation, and stands for the word "if" from the original problem. As there are three circumstances, with 0 equaling the chance that the woodchuck cannot chuck wood, 1 being the theory that the woodchuck can chuck wood but chooses not to, and 2 standing for the probability that the woodchuck can and will chuck wood, we clearly must choose 2 for use in this equation. C = the constant of Chuck Norris, whose presence in any problem involving the word chuck must there, is well known to equal 1.1 of any known being, therefore the final part of this calculation is 1.1. As is clear, this appears to give the answer of (61 + 2) * 1.1 = (63) * 1.1 = 69.3 units of wood.